

SL160 母线测温传感器 (LoRa 版) 用户手册 V1.1

江苏芮捷智能科技有限公司

地址:南京市浦口区星火路9号

邮箱: Jullie.zheng@rejeee.com

电话: 158 6180 7793

网址: www.rejeee.com

◆ 关于本手册

本文档主要介绍了本传感器的规格和功能特点,详细描述了传感器的操作说明、运行逻辑和无线通信数据格式,方便用户接入和展示数据内容。

◆ 文档变更通知

用户可以通过芮捷官网 www.rejeee.com,淘宝商店或相关技术支持人员获取技术资料。

◆ 免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2023 芮捷所有。保留所有权利。

1.	产品机	既述		5
	1.1.	简介		5
	1.2.	订货说	治明	5
2.	产品表	观格		6
3.	外形月	マ寸		7
4.	使用证	兑明		8
			7景	
	4.2.	设备介	下绍	8
			外观介绍	
			治明	
	4.4.		页说明	
			上报周期	
			检测周期	
		4.4.3.	变化量	10
	4.5.	按键说	治明	10
		4.5.1.	开机操作	10
		4.5.2.	关机操作	11
		4.5.3.	触发上报	11
	4.6.	供电缆	及联	11
	4.7.	固件升	十级	11
5.	无线扎	设文格 :	t	12
	5.1.	整体排	及文格式	12
		5.1.1.	非 LoRaWAN 方式	12
		5.1.2.	LoRaWAN 格式	12
	5.2.	上行数	女据格式	13
		5.2.1.	数据类型说明	13
		5.2.2.	基础传感器类型列表	13
		5.2.3.	定制化类型列表	13

	5.3.	基础传感器数据详细定义	14
		5.3.1. 设备信息(0x00)	14
		5.3.2. 温度(0x04)	14
	5.4.	定制化类型详细定义	14
		5.4.1. 多路温度(0x14)	14
	5.5.	查询配置类型	15
	5.6.	终端上报示例	15
	5.7.	下行数据格式	15
		5.7.1. 数据下行类型列表	16
		5.7.2. 读指令详细格式	16
		5.7.3. 写指令详细格式	
	5.8.	报文尾 (CRC16)	17
6.	性能测	测试	18
	6.1.	接收灵敏度测试	18
	6.2.	发射功率测试	18
7	似江	급콮	10

1.产品概述

1.1. 简介

SL160(LoRa 版)一款母线槽红外测温传感器,使用 LoRa 扩频无线通信,支持标准 LoRaWAN 无线协议,内置全球地区规范(如 CN470、CN779、EU433、EU868、US915、AU915、AS923、IN865 等)。用户使用 LoRaWAN 模式只需简单配置选择不同地区规范,即可适配各种地区的 LoRaWAN 标准。

SL160 同时支持非 LoRaWAN 模式通信,支持 LoRa 全参数开放配置,可灵活应用于各种 LoRa 通信应用场景。支持电池供电或外部 DC 接线端子级联供电。

设备功耗低,传输距离远,部署简单,可用于工厂、商场、机房等母线槽无线测温场景。

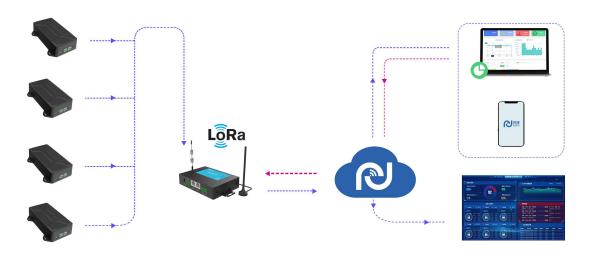
1.2. 订货说明

型号	工作频率
SL160-LF	433~510MHz
SL160-HF	863~928MHz
SL161-LF	433~510MHz
SL161-HF	863~928MHz

2.产品规格

参数	SL160	SL161			
CPU	Cortex-M 低功耗处理器				
无线		SX1268/SX1262			
加密		AES128			
供电方式	DC 9 [~] 36V 可级联串行接线	锂亚电池 5400 mAh(可拆壳更换)			
功耗	长供电	3年(60秒检测,600分钟上报@SF9) 5年(180秒检测,1800分钟上报@SF9)			
测量范围	-20 °C ~ 300 °C				
精度	±2 ℃				
响应时间	180 秒 (即检测周期,可配置)				
数据速率	300 bps ~ 62.5 kbps				
尺寸	129mm*78.5mm*50mm				
发射功率	最大 22dBm				
接收灵敏度	-137 dBm (BW=125K, SF=12)				
天线接口	内置天线				
工作频率	433~510MHz				
工作观告	863~928MHz				

3. 外形尺寸



4. 使用说明

4.1. 使用场景

设备结合 LoRa 低功耗远距离通信的特点,结合红外测温方式,无需改变母线结构,安全方便的测量母线温度,部署简单。系统整体架构示意如下所示。

系统框架图

4.2. 设备介绍

4.2.1. 外观介绍

图示: 外观视图

1. 供电级联接口

如果设备是外供电方式:可通过设备侧面 3.81mm 间距端子串行连接多个设备,使用一个 DC9~36V 的统一供电电源。

如果设备是内置电池版本,则该接口不接保持悬空即可。

2. 按键

按键可以对设备进行软关机和触发上报数据。长按 3s,设备开机、关机操作。短按(0.1~3 秒之间),设备立即采集数据并上报。

注意: 仅电池版本支持开关机。

3. USB 接口

设备按键侧提供 USB Type-C (USB-C)接口,方便用户修改参数或更新固件。也可以用于设备临时供电方便测试。

4. 信号指示灯

默认设备有 4 路红外探头,分别对应 4 个 LED 指示灯。正对 LED 灯侧,从 左至右依次为第 1~4 路探头。

外供电方式: 4路灯常亮, 检测温度时闪烁。

电池供电方式: 4路灯常灭, 检测温度时闪烁。

4.3. 操作说明

- 1. 插入 USB-C 线缆,连接电脑,注意:需提前安装好串口驱动,串口转 USB 芯片为 CH340。
- 2. 打开 SensorTool 上位机软件,使用默认波特率 115200, "串口选择"设备对应的 COM 端口,点击"打开串口"将自动读取设备参数。等待读取完成即可查阅或修改参数。
 - 3. 用户可使用 SensorTool 通过图形界面化方式填写配置即可,如下图所示。

4.4. 配置项说明

4.4.1. 上报周期

该参数单位为秒,当设定时间到时采集并上报传感器数据。

系统默认数据上报周期为 1800 秒 (即 30 分钟,相当于心跳传输)。如恒定环境中,即 30 分钟上报一次数据。该参数可根据实际情况进行调整。

4.4.2. 检测周期

该参数单位为秒,当设定时间到时,设备主动唤醒并读取传感器。读取完成 后判断当前值与上次上报值差值是否超过**变化量**,超过则发送,不超过则不发送。

系统默认检测周期为 180 秒,最小可配置为 1 秒,最大可配置 65553 秒。 该周期越小,响应越灵敏,但是功耗更高。该参数可根据实际情况进行调整。

4.4.3. 变化量

设计**变化量**的目的是为了支持设备按周期上报的同时,可以根据**检测周期**进行变化量判断。当检测数据与上次发送的数据超过**变化量**时立即上报,而不用等待**上报周期**时间。以便支持对被测量的对象的快速响应,同时兼顾在不怎么变化的时段减少发送次数,以平衡功耗和响应速度。

4.5. 按键说明

设备外壳上带一个按键,方便测试和开关机操作。

4.5.1. 开机操作

如果设备处于关机状态,长按 3 秒设备将开机(4 颗 LED 灯依次点亮),然后设备 LED 灯闪烁 3 次(LED 的个数代表设备电压等级)。

4.5.2. 关机操作

当设备处于正常运行状态时。按键按下如果持续超过 3 秒,设备关机 (4 颗 LED 灯依次熄灭)。

如果按键没有持续超过3秒,则判定为短按操作,设备将进行触发上报。

4.5.3. 触发上报

通过短按按键(0.1~3 秒之间)可判断设备处于开机或关机状态。也可用来 测试外接探头连通性或无线性能测试。

短按设备 LED 无显示,则设备处于关机状态,否则设备将先常亮(LED 个数为设备电压等级),然后采集数据并发送。

4.6. 供电级联

外供电版本可通过接线端子进行串联, 示例如下。

4.7. 固件升级

使用上位机工具可对设备进行固件升级,具体参考 SensorTool 说明文档。

5. 无线报文格式

5.1.整体报文格式

为了支持各种不同的业务模式和应用场景,终端可配置为非 LoRaWAN 或 LoRaWAN 模式。

5.1.1. 非 LoRaWAN 方式

默认终端上报数据格式如下:

Header	DevAddr	FCtr1	SeqNo	f.	传感器数据(消息体)		
1字节	4字节	1字节	2字节	数据 1		数据 N	2 字节
+h 3// 31	设备	控制字	包序号	Type+Data	Type+Data	Type+Data	CRC16=首字
协议头	地址	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	也分为	N Bytes	N Bytes	N Bytes	节至 Body

5.1.2. LoRaWAN 格式

为了节约传输字节,重复或冗余的数据项在 LoRaWAN 模式下不上报,只上传传感器数据内容。如下所示 FRMPayload 即非 LoRaWAN 模式中的传感器数据。

			FRMPa	MIC		
МПЛБ	FHDR	FPort	数据1	•••	数据 N	MIC
MHDR 1	FIIDK	rrort	Type+Data	Type+Data	Type+Data	4 字节
			N Bytes	N Bytes	N Bytes	4 7 1

5.2. 上行数据格式

5.2.1. 数据类型说明

类型范围	说明				
0x00~0x0F	格式(T+V),基础传感器类型,固定数据格式,省略长度字节				
和 OxFF	僧式(ITV),垄伽传总确关至,固定效据僧式,有喻区及于 P				
0x10~0x1F	格式 (T+L+V),通用类型,保留长度以适配定制化需求				
0x20~0x3F	格式(T+L+V),定制化项目需要,不同项目适配不同内容				
0x80 [~] 未定义	格式(T+L+V),用户参数配置和查询,不同项目适配不同内容				

5.2.2. 基础传感器类型列表

Type (1 Byte)	Length 1 Byte	Value	Value 描述	
通用应答	忽略	2 学芸	第1字节对应下行指令(被应答的命令)	
0xFF		2 字节	第2字节对应结果	
设备信息	忽略	2 字节	设备信息包内容已知	
(0x00)			故忽略长度字段节省字节	
温度	<i>7</i> 71 ш∕х	2 字节	2 字节的有符号整型	
(0x04)	忽略 (0x04)		2 子 即 1 何 5 登 空	

5.2.3. 定制化类型列表

Type (1 Byte)	Length 1 Byte	Value	Value 描述
多路温度 (0x14)	N*2	N*2 字节内容	N组数据温度数据

5.3. 基础传感器数据详细定义

5.3.1. 设备信息(0x00)

Туре	Value						
设备信息	Version Battery Level Reserve						
1字节	3bit	1 Byte					
0x00	Version 为版本信息						
	Voltage Level 为设备电压等级(表示范围 0~31)						
	Reserve 为保留字节						

5.3.2. 温度(0x04)

Type	Value	说明
1字节	2 字节	
0x04	温度	2字节的有符号整型,零下为负值
		默认单位 0.1 度, 即 201 表示 20.1 度

示例如: 0xFF88 为-120(-12 度), 网络字节序模式为 {04 FF 88}

5.4. 定制化类型详细定义

5.4.1. 多路温度 (0x14)

根据长度适配 N 路温度,如果 N 为 1 可直接使用基础温度类型 0x04。如果需要传输 N>1 路温度,采用下面方式顺序合并同类数据项。

Туре	Length	Value	Value	Value
1字节	1 字节	int16_t	•••	int16_t
0x14	2*N	第1路温度	•••	第N路温度

如 4 路测温探头,即上述类型 N 为 4,单路温度长度(int16_t)为 2 字节。

5.5. 查询配置类型

读相关项目中用户参数,如周期,校准值,变量设置等。

Value 按顺序列出,采用 Length 以便自适应无线查询配置。如 Length 是 4,则代表后面只含上报和检测周期。如 Length 是 8,则表示含上报和检测周期和校准值。

Туре	Length	Value					
1字节	1 字节	uint16_t	uint16_t	int32_t	uint8_t	uint8_t	
0x81	Value 长度	上报周期	检测周期	校准值	变量 1	变量 2	

5.6.终端上报示例

设备默认运行非 LoRaWAN 模式,数据内容包含协议头、设备地址等前缀部分和 CRC 尾缀部分的完整内容。

如下所示,其中传感器数据部分,主要有设备信息(0x00)、环境温度(0x04)、多路温度(0x14)。

Header	DevAddr	FCtr1	SeqNo	传感器数据(消息体)			CRC
1字节	4字节	1字节	2字节	数据1		数据 N	2 字节
协议头	设备地址	控制字	包序号	Type+Data N Bytes	Type+Data N Bytes	Type+Data N Bytes	CRC16= 首字节至 Body

在 LoRaWAN 模式下,数据只有 FRMPayload,即传感器数据部分。默认上报 0x00、0x04、0x14 类型的内容。

5.7. 下行数据格式

下行由外部或平台发送至网关,通过网关执行下发。整体下发给终端的数据报文格式与终端上报的数据格式一致。

5.7.1. 数据下行类型列表

Type 1 字节	Value	Value 说明		
Read	1 字节	以 Value 内容区分不同请求		
0x01		如 Value == 0x81, 则读用户配置数据		
Write	(1 + N)字节	首字节用于判断写内容的类型		
0x02		0x00+YYMMDDhhmmss 年月日时分秒		

目前设备的下行内容仅在 LoRaWAN 模式下适用。支持的指令有读取用户配置参数,写周期和变量。

5.7.2. 读指令详细格式

Type 1 字节	Value	Value 说明		
0x01	0x81 读用户配置	读周期及相关校准设置,返回请参考上行		

5.7.3. 写指令详细格式

Type 1 字节	Value 1 字节	Value N 字节	说明
0x02	0x02 0x11 上报周期		即 LFT 值,单位秒
0x02	0x02 0x12 采样周期 0x02 0x14 变量 1		即 LCP 值,单位秒
0x02			无符号整型,温度变化量
0x02	0x15 变量 2	uint8_t	无符号整型高温阈值

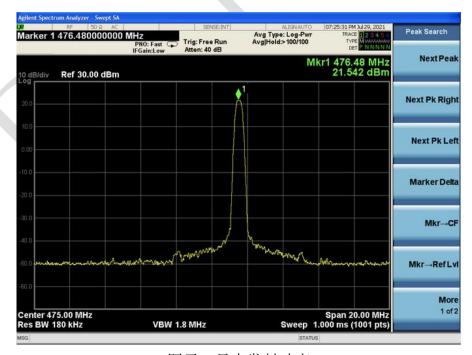
5.8. 报文尾(CRC16)

设备使用的 CRC 校验校验算法如下。

```
static uint16_t get_crc16(uint16_t inData, uint16_t outData) {
    outData = (outData >> 8) | (outData << 8);
    outData ^= inData;
    outData ^= (outData & 0xff) >> 4;
    outData ^= outData << 12;
    outData ^= (outData & 0xff) << 5;
    return outData;
}

static uint16_t cal_crc16(const uint8_t *pData, const uint32_t len)

{
    uint32_t i = 0;
    uint16_t crc16 = 0xFFFF;
    for (i = 0; i < len; i++) {
        crc16 = get_crc16(*(pData++), crc16);
    }
    return crc16;
}</pre>
```



6. 性能测试

6.1. 接收灵敏度测试

扩频因子 SF	接收灵敏度 dBm,@BW=125K,470MHz
SF=7	-126
SF=8	-129
SF=9	-131
SF=10	-134
SF=11	-136
SF=12	-139

6.2. 发射功率测试

图示: 最大发射功率

7. 修订记录

修订日期	版本	发布说明	编辑/审核
2021.06	V1.0	初稿发布	
2023.08	V1.1	重新修改发布	

